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ON PATH PROPERTIES OF CERTAIN

INFINITELY DIVISIBLE PROCESSES
1 )

by

Jan Rosinski

Mathematics Department
University of Tennessee

Knoxville, TN 37996

Abstract: Let {X(t): teT} be a stochastic process equal in distribution to

{fsf(ts)A(ds): teT}, where A is a symmetric independently scattered random

measure and f is a suitable deterministic function. It is shown that various

* properties of the sections f(*.s). s 6 S. are inherited by the sample paths of
7'

X, provided X has no Gaussian component. The analogous statement for Gaussian

processes is false. As a main tool, a "LePage-type" series representation is

fully developed for symmetric stochastic integral processes and this may be of

independent interest.

AMS (1980) Subject Classifications: Primary: 60G17, Secondary 60C57. 60E07.

Keywords and Phrases: infinitely divisible processes, sample path properties,
series and stochastic integral representations of infinitely divisible
processes.

')This research was begun while the author was visiting the Center for
Stochastic Processes of the University of North Carolina at Chapel during July
1986; this initial part of the research was supported by AFOSR Grant F49620 85C
0144 and the latter part of it was partially supported by AFOSR Grant No.
87-0136. 88 2 :
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1. Introduction.

A stochastic process X = {X(t): teT}, with an arbitrary index set T. is

said to be tntttely dtvtstble (i.d.) if its finite dimensional distributions

are all i.d. An i.d. process X is said to be a stochastic integral process if

d
(") {X(t): tET) = f" f(t,s) A(ds): t 6 T),

S

where f:TxS -+ IR(C) is a deterministic function and A = {A(A): A e P} is an

independently scattered i.d. random measure on a 6-ring V of subsets of a

d
certain set S. Here = " denotes equality in (all finite-dimensional)

distribution(s). The equality (*) will be referred to as a stochastic integral

representation of X. The family of stochastic integral processes contains such
I

important i.d. processes as harmonizable, moving averages, fractional processes.

strictly stable and semistable, and also the so-called f-radial processes,

recently introduced and studied by M.B. Marcus [2].

In this paper we establish a connection between certain sample path

properties of stochastic integral processes (satisfying (*)) and the

corresponding properties of section of f(.,s), s e S. In Theorem 4 (Section 4)

we show that the lack of certain analytic regularities of the sections of

f(..s), s & S. (as for example: discontinuity, unboundedness. etc.) is inherited

by the sample paths of symmetric stochastic integral processes without Gaussian

component. The analogous statement for Gaussian processes is false as is

illustrated by an example. Integrability of sample paths is studied in Theorem

6 (Section 4). where we use a kind of Monte-Carlo technique to show that the
6

sections f(.,s), s e S, must have at least the same order of integrability as

the paths of X.

One way of looking at these results is that they provide Loseddtati(y

se'LfLaJte necessary conditions for interesting sample path properties.

Therefore one may easily exctude a number of path properties that do not hold

6.
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and this gives an insight into the behaviour of the sample paths of the process.

The main tool used in this paper is the series representation of stochastic

integral processes obtained in Section 3. This series representation, which we

derive as a special case of a "generalized shot noise" (see [7]), generalizes

various "LePage type" representations of symmetric stochastic integral processes

(see Examples in Section 3).

In Section 2 we give the pertinent facts concerning random measures and

stochastic integrals. Further details can be found in the work of B.S. Rajput

and the author [5]. In Section 5 we discuss possible generalizations of the

results of Section 4 to not necessarily symmetric stochastic integral processes.

Notation. We shall introduce now some notations that will be used

throughout this paper. A stochastic process A = {A(A): A 6 Y} is said to be an
-"%'

Lndependent(g nucatte'ed L.d. ,qandoa seawq'ie (i.d. random measure, for short) if

(a) for every pairwise disjoint A1,. A2  ...e Yf, the random variables

A(A1 ), A(A2 ) .... are independent and

4.O

A( U An) = I A(An) a.s..

n=l n n=l n

provided U A 6 Yf;

n=l n

,.' (b) for every A 6 Y. A(A) has an i.d. distribution.

* d
Further, an i.d. random measure A is said to be oaaa'cLc if -A(A) = A(A). for

,,. . every A e Y. A typical and important example of an i.d. random measure is the

random measure generated by the increments of a L6vy process, say {Z(s): seS}.

where S is a (possibly unbounded) interval. By definition A((ab])=Z(b)-Z(a),

(a,b] C S, and Y is the family of bounded Borel subsets of S.

I+,. From now on we shall assume that the following condition is satisfied:

there exists a sequence {Sn}n= 1 C if such that U Sn = S. A set A e o(Y) is said
nn.::l n=l

to be a A--iero set if A(A1 ) = 0 a.s. for every A1 C A. A1 6 Y. A a-finite

*%
o, %'-I
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,A' measure X on a(Y) is said to be a contwot aeasut'e of A if A and X have the same

%A families of zero sets. In the case of the random measure generated by the

increments of a Lvy process, X may be chosen as the Lebesgue measure, but every

other measure equivalent to the Lebesgue measure is also a control measure of A.

*An explicit form of a control measure for a general A is given in Proposition

2.1(c) [5].

To avoid obvious difficulties with the measurability of certain sets (see

Theorem 4) it is convenient to assume the separability of the representation

(*). The definition given below parallels Doob's definition of separability of

stochastic processes. Let T be a separable metric space. The representation

(') is said to be seta'uaite if there exists a sequence {tn}1 C T and a A-zero

. set S C S with the property: for every t E T there exists a subsequence {t }
nk

of {tn) such that lim f(t .s) = f(t,s), for every s e S\S . For example, if
.-k- K

the sections f(-,s), seS, are continuous (or one-sided continuous if T C IR),

then the representation (*) is separable. As in the case of stochastic

processes, the separability of the stochastic integral representation is a

minimal assumption which can always be made. without loss of generality.

Indeed, let X(1) be a probability measure on a(0). equivalent to X. Then

f={f(t.-): teT) may be viewed as a stochastic process and by the Doob's theorem

there exists a separable modification of f with values in a compactification of

IR (C). Such a modification does not affect (*), which completes the argument.

In this paper, (f0,9.P) will denote a probability space. 1(Z) the

distribution of a random element Z and Leb the Lebesgue measure on IR. For

simplicity we will consider only real f's in (w), but the results extend easily

to the complex case (see the Remark concluding Section 3).

"A,.%
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2. Symmetric i.d. random measures and stochatic integrals

In this section we give the pertinent formulas and facts concerning

stochastic integrals relative to i.d. random measures. These formulas will be

used in Section 3 to derive series representations of symmetric stochastic

integral processes

Let A = (A(A): A e Yf) be a symmetric i.d. random measure without Gaussian

component. The characteristic function of A(A) can be written in L6vy's form:

(2.1) V(A(A))(u) = exp{2 f0o(Cos ux-1)FA(dx)},

u E IR, where FA is a (symmetric) Levy measure on IR. Let X be an arbitrary but

fixed control measure of A. We shall show that there exists a measurable family

{q(s,')) sf-S of Borel measures on (0,-) such that

(2.2) 2FA(B) = .f [J'IB(x)q(s.dx)]X(ds).
e. A

for every Borel set B C (0.) and A 6 Y; furthermore

(2.3) (lseS: q(s,(Oa)) = 0)) = 0,

and for every s e S,

(2.4) f (1 x 2)q(s.dx) <

Indeed, as it was shown in Propositions 2.1 and Lemma 2.3 of [5]. the

2
measure v determined by v(A) = (l )FA(dx), A e Y, is a control measure of

A and, furthermore, there exists a measurable family {p(s.' )} S of Lkvy

I'. _ measures on R such that

(2.5) FA(B) = f [SIB(x)p(s.dx)]v(ds),
A IR

• A 6 Y, B C [R. Since X and v are equivalent u-finite measures on u("f). there

exists a strictly positive and finite everywhere version P of the Radon-Nikodym

derivative du/dX. Put q(s,dx) = 24(s)p(s~dx), s e J, x > 0. Then (2.2) follows

from (2.5). Since p(s,-) Is a Lkvy measure, (2.4) is satisfied. Finally note

that A° = {s:q(s,(O.w)) = 0) is a A-zero set by (2.2) and (2.1), so that X(A )

0. We have proven (2.2)-(2.4).

* Using (2.2). (2.1) can be rewritten in the form:
""

V,

% .- . . ~ . - : :
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. Q(A(A))(u) exp{J[Jo[cox ux-l]q~s,dx)]X'ds)}.

- A

. "Set

4 (u.s) = fIil'(ux) 2 ]q(scx).

N" s' S. u E R, and

LO = {g: S -PIR: g is o(Y)-measurable and f'P(g(s).s)X(ds) < w}

S

Then L, is a linear metric space (a so-called Musielak-Orlicz space) with the

%% F-norm defined by

][gl{, = inf(c>O: f4P(c -g(s).s)X(ds) c).
S

The next proposition, which follows as a particular case from Theorem 3.4

and Proposition 3.6(i) in [5], states the basic facts regarding Wiener-type

* stochastic integrals relative to symmetric i.d. random measures.

-.N., PROPOITION 1. 5Jhe'e exiLti a un qe LooalM, denoted 6V f (.)dA, ['win
S

L nto L (0,.,P) o uch that

• ,....n n"f( I a IA )dA = I a.A(A.) a.s.

-. S j=l1 i j

[oq etesy n> 1 , a I..... a E IR and PLat%wLe dLo jGLnt A1 . An Ac. " utheq,

the chaqacteqtotic fuctton of fgdA to etSCn 6V
S

(2.6) Y(fgdA)(u) - exp{f[fJo(cos(uxg(s))-1)q(s.dx)]X(ds)}•
S S

3. Series developments of symmetric stochastic integral processes.

Let A, .q be as in the previous section, so that (2.1)-(2.4) hold. Set

1".' R(us) = inf{x>O: q(s.(x,-)) _ u}, u > 0.

.- (in words: for fixed s. R(,s) is the right continuous inverse of the function

x - q(s,(x.-))). Let X( 1 ) be an arbitrary probability measure on (S,c(bf))

equivalent to X. Put

R(1)(us) = R(u (s).s). u > 0, s E S.

where the version of the Radon-Nikodym derivative dN- 1 /d, is chosen to be
.

i ; .p.*i~ ll* lip.'i i'llA ll. /
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strictly positive and finite everywhere.

Let fn}n {e}. {n} be independent sequences of random elements

(variables) such that:

-{n} is a sequence of i.i.d. random elements in (S.a(f)) with (n) =X ( ) .

n n

-{en} is a sequence of i.i.d. exponential random variables, i.e. P{e > x} =

exp(-x), x > 0.

-{n } is a sequence of i.i.d. random variables with P{e =-1} = P{e =l}
n = n=

Put = e 1+..+e.

PROPOSITION 2. Yet {X(t): teT} Ge a atochaatLc jmceo o natLigyt ng (u)

,vhcqe A ta a -jaactqi~c t.d. qand-ox acaoaqe aLthout &"a~an ccAtionent. 5hen

0-. *ath the aiote notattona, fo'q etwW. teT, the ae'qLeo

Y(t) e R - 'f Mt n
n= 1

coantte ge,.' a.5. and

d
{X(t): teT} = {Y(t): teT).

Proof. Let g E LP (recall Proposition 1). First we shall show that

d G
(3.1) fgdA = .2eR(1)(n'fn)g(En)'

w r t s iS n = l n

where the series converges a.s. Indeed, this series can be written as a

particular case of a generalized shot noise (see [7]):

(3.2) -H(. n )
n=l

' @, where f = (eF ) are i.i.d. random elements in S = (-1,l)xS and H(u,v) =
'Fn n n"F- R(1)(

SR l-(us)g(s). u>0, v=(e,s) e S. In order to establish the convergence and

.1, distribution in (3.2) we shall verify the conditions of Theorem 2.4 in [7].

First we need to show that

00

G(B) = f f I (H(uv))duX(dv). B C I.

s y rS

is a Le~vy measure, where

L%1
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= ( n) 2 ( +-1 2)

Observe that

(3.3) G(B) = "C(-B) + C(B).

where

G(U) = f[JOIux 0o(R() (u.s)g(s))du]X
(1 )(ds).

S

Since, for every x > 0 and s E S.

(3.4) Leb ({u>O: R(1)(u,s) > x}) =

d\( 1)
Leb ({u>O: R(u --- (s).s) > x}) =

dX~1 )
Leb ({u>O: R(u,s) > x}) / - (s)

q(s, (x,-)) d (s),

we get

(3.5) G(U) = s ))q (s 'd x ) ]X(d s ),

for every Borel set U C IR.

On the other hand, by (2.6), (3.5) and (3.3),

V(fgdA)(u) = exp(f(cos(uy) - l)G(dy)} =
S

exp{f(cos (uy) - 1) G(dy)),
IR

for every u e IR. Hence G is a Lkvy measure and

(3.6) V(fgdA) = clPois(G).
S

Since, for every r > 0,

A(r) = fo H(u I[l](H(u'v))X(dv)du =0,

S

(3.1) follows from (3.6) and Theorem 2.4 [7].

Now we shall show that (3.1) implies the conclusion of the theorem.

Indeed, let t ..... tm e T and a I . .. . e IR be arbitrary. Put

m
g(s)= I a f(t s). Then we get

I46
[A42,iz%'r"
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iM d m
I a.X(t,) I E a ff(t ,s)A(ds)

v'. j=1 j=1 J S J

=fgdA

S
d02 ; e) ~)(Tn g(E)

n= 1
m
2 a = Y(t )
j=1j i

which completes the proof.

EXAMPLES.

(i) If X(S) < -, then X(1)(A) = X(A)/(S), A 6 o( f), may be viewed as a

"natural choice" of X(1 In this case di(1)/d =-d 1/A(S), hence R(1)(u,s) =

* R(u/X(S).s).

(ii) Let X(t) = Jk(t-s)A(ds). t e IR, be a moving average process. In this
K IR

,P:4 case A is a stationary random measure, so that X=Leb on IR. Hence X 1 can be

any distribution on IR with non-vanishing density 'p (e.g. Gaussian, double

exponential, etc.). By Proposition 2.

Y(t) = 6 nR( n 0(fn.fn)k(t-f n ) , t F IR.
n=n

has the same finite dimensional distributions as {X(t): t e [R).

-1/ac
(iii) If A is symmetric a-stable, then R(u,s) = C u -  , where C is a

4...

numerical constant. In this case.

L'" _1/a dX(l1) -1/

(3.7) Y(t) = C -/ E
n= 1

t E T is a version of {X(t): t E T) satisfying (w) (T is an arbitrary set).

, (3.7) generalizes the representation in Marcus and Pisier [3], which assumes

X(S) < m and Xl) is chosen as in (i).

If one replaces the sequence ({n) in (3.7) by a sequence { n of i.i.d.

zero-mean normal random variables with EJ n a = 1. then the resulting series

will converge a.s. . for each t, to. say Z(t). The process (Z(t): t 6 T) has the

same finite dimensional distributions as (X(t): t e T}. A proof of this

N!We.
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statement parallels the proof of Proposition 2; the measure X, in this case, is

defined as the joint distribution of C n and f n' i.e. X--f((C n , n )), on S = IR x S;

the very special form of R(u,s) is crucial for (3.6) to hold. This generalizes

the representation in Marcus and Pisier [3] and gives a conditionally Gaussian

representation of symmetric stable processes with non-necessarily finite

spectral measures (see Lemma 1.6 [3]).

e ,",' .(iv) Let A be a symmetrization of a Poisson point process with intensity

measure X, i.e.

If(A(A))(u) = exp{ 2(cos u-1)X(A)}.

Then q(s,(xo)) = 2 if x < 1 and = 0 if x > 1. Hence R(us) I[o 2](u), and by

Proposition 2,

dX(1)

Y(t) I C I(-T n (En) 2)f(tin),

t F T, has the same finite dimensional distributions as {X(t): t c T}. This

representation is especially interesting when X(S) =

REMARK. Proposition 2 holds true for complex stochastic processes satisfying

(*) with f ccr.texa and A a "teal symmetric i.d. random measure without Gaussian

component. To see this, let XI(t) = ReX(t). X2 (t) = ImX(t), fl(t,s) = Ref(ts),

f2(t.s) = Imf(t,s). Set T' = Tx(,2} and define, for t' = (t.k) e T',

X(t') = Xk(t), f(t',s) =fk(ts).

Then (w) is equivalent to

d
{X(t'): t ' T = (Jf'(t',s)A(ds): t'6T').

S

By Proposition 2 the stochastic process
CO

Y'(t') = IE6 R(1)( f )f'(t',f ) t ' .
n=1 n n n n

is equally distributed with (X'(t'): t' F T'}. Hence the complex-valued

SPstochastic process

X(t) = X'((tl)) + iX'((t,2)), t F T.

Is equally distributed with

J.

'p

"4 -F' .1 .1 - -
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Y(t) = Y'((t,1)) + iY'((t,2)), t f T,

as it was claimed.

4. Path properties of symmetric stochastic integral processes

The following proposition is crucial for the proofs of Theorems 4 and 6 in

this section.

PROPOSITION 3. let {X(t): t e T} 6e a atochacttc P~oceaa aatafytng (*),

Mhce A Li a yAetqLc t.d. umdox neaau'e atthout 'Suo"atan coa cnent. Yet C 6c

a meaosuiatAte 1.nca t uL6ot-ace of [R OD. Yutae that, foi acc ocequencc {tn} C T.

Wtth rqca aitt tt one

(X(tl)' X(t 2 ) ... .) C.

05 h en

..... (f(tl,"), f(t2, ) . . C -a e.,

oheic X t5 a cont-LoL neaowute of A.

Proof. Let X( 1 ) be a probability measure on (S.a(f)) equivalent to X.

Using the series representation from Proposition 2 we get

(4.1) 0 = 2P{(X(tl) X(t 2) = 2P(Y(t ) C)== .~ 2).... 't C) 2P( 't)Y(t2 ... ) C

= P((Y(t1 ).Y(t 2 ) ... ) ' C) + P((Y'(tl),Y'(t 2 ) ... ) i C)

CO

where Y'(t)= I e'R(1 )(n ,f)f(t,f) , =F and C = -e if n > 2. Since C is
n n n=l n n 1

a linear space, the last expression in (4.1) is greater than or equal to

'tf C)=

P(f(t,) C, R(1 )(-Y1 l1 ) > 0) =

[r ((f(t.S).f(t2.s) .... ))Jo I(. (R) (u.s))eUdu]X(1)(ds).0. SL Cc 1 2 '0(,

This shows that the above integral (over S) is equal to zero and, to complete

the proof of the Proposition, it suffices to show that

. (4.2) fO I( , )(R(1)(u.s))e-Udu > 0 X(1) - a.e.

Indeed, this integral is equal to zero for a given s if and only if

Leb({u: RM(u.s) > 0)) = 0w which, in view of (3.4). is equivalent to

0,

' ., '. _. '". ", .." -". . . - L, . -a. * .x .. 4 k .'. -. J. . . "-,. , '. ' . ' : .Z c .' .N
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q(s,(O.w)) = 0. Since the last equality may hold only for s belonging to a

SX1)-zero set (recall (2.3)). (4.2) follows and the proof is complete.

In the statement of the next theorem we shall use the following notation:

-" Let T be a metric space and g: T -* R. We shall write

g C 1i if g is bounded on T,

g e C2 if g is continuous on T,

g E T3 if g is uniformly continuous on T.

g 6 4 if g is Lipschitz continuous on T.

further, when T is a (possibly unbounded) interval

g e IC if g is free of oscillatory discontinuities on T,

g f 6 if g is of bounded pth variation on every subinterval of T,

4 g F_ if g is absolutely continuous on every subinterval of T,

g 6 (CS if g is differentiable on T.

THEOREM 4. Vet T Ge a a-cotzct seatc -apace. Vet {X(t): t e T} & e a

.aepaqa.te stochaatLc Awocea admitttng a aepaiawJte iepqeaentatton (*). ohce A

.a a yAmetqtc 6.d. a'ndoa mea~uqe wLthout (aucLan conponelt. Vet X 6e a

contqoL aeaauie of A and supose thuat foq some k=l .. 8,

X~s 6 S: f(',s) f k}) > 0

(T Ls an Lntei~at hen k 5). hen

. P( 6 fl: x(. w) f (CO) > O.

Proof. Assume, to the contrary, that

(4.3) P({f : X(-, ) E CK}) = 1

Let {tn} C T be the set in the definition of the separability of representation

(w). Proceeding very similarly as in the proof of Theorem 2 in [1]. one can

find a linear measurable subspace Ck C R such that

1({s: (f(tlS), f(t2,s) .. .) C Ck))

= Ms: f(..s) f £k
a (.' and, by (4.3),

6o
.%

a" , ' " ,' " ,' '" - ," " " "" " " ..
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P({x: (X(t1F ), X(t2.w) ....) C C}) = 1.

Hence, by Proposition 3,

x({s: f(-.,s) f = 0.

which contradicts the assumption of the theorem and ends the proof.

It is rather surprising that Theorem 4 fails in the Gaussian case. To see

this, we shall construct a .,owided a.s., discrete parameter, Gaussian process

{X(t): t e T). which satisfies (m) and such that {f(t,s): t 6 T) is un64jded,

for every s (note that the separability assumptions are satisfied trivially if T

is discrete).

EXAMPLE. Let A be the Gaussian measure generated by the increments of a

Brownian motion on S = [0,1] (i.e., A is a white noise on [0,1]). Let (h nk} be

the Haar system on [0,1], i.e. ho,0 = 1 and

r 2n/2 if s e [(k-1)2 
n , (2k-)/2 

n + l),

hn,k(s) = -2 if s e [(2k-1)/2 + , k/2n],

0 otherwise.

n 1 k =1. 2n
. Put Zn.k = f"hn kdA. Since {hn k) is an orthonormal

--. , system, {Z are i.i.d. N (0,1) random variables. Set T = {(nk): n 1 ,
n,k

. k=l.... 2n and put, for t = (n,k),

-1f(t,s) n h s). 0 S < 1.

X(t) = 10 f(ts)A(ds) = Zo n~k

Clearly, sup If(t,s)j = w for every s e [0,1].

% T

Since16.4

O;
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I P{IX(t)I > 2) = 1 P{In-lZn > 2)
teT n=l k=1 n k

= . 2np( 1-Zl iA > n)
n=1 '

-. n 2. 1 2

"-.S 2nexp(-n )Eexp( l' ) C o.
n= 1

sup IX(t)l < a.s. by the Borel-Cantelli Lemma.
T

REMARKS: (i) When the process {X(t): t e T} obeys the zero-one law (as in the

stable or semistable cases), the conclusion of Theorem 4 can be strengthened to:

',." P({X(.'w) f }) 1.

(ii) Using Propositions 1 and 3, one can easily generalize Theorem 5.1 of

.[ [6] (proven for symmetric stable processes) to arbitrax' processes admitting

representation ('). with A being a symmetric i.d. random measure without

Gaussian component.

Now we shall investigate the integrability property. Since, in this case.

a natural metric space of sample paths is some LP-space, which consists of

ctacnae of equivalent functions, the methods of Theorem 4 can not be used. To

resolve this difficulty, we shall use a kind of Monte-Carlo technique based on

the following elementary fact (which follows immediately from the Borel-Cantelli

Lemma):

LEMMA 5. let Z, Z 1 Z .... be 1.A.d. 'andox taqtLatea and p 6 (0,o). fhen

EIZI p ( - tf and onty L n 1 /PZn -40 . .. , a5 n

THEOREM 6. let (T,. p) 6e a a-4nte xeaw ue c1ace. let {X(t): t F T) 6c
'-S.,-.

.

a xeau'a6te 5tochastLc poceu whLch adat o ,ietLeoentatton (w) Ouch that

f:TxS -# IR to d x a(bf)-meanu'a4te and A t, a oi ,aet1qtc 'wndca meaouse ettcut
q

gantaat coapcment. let X Ge a contot neaoute of A and supoCe that, fo' cxc

,,. p (0,w).

C.%

C. ~ ~ -. %.''.-..;.% ~* " 5L %lV - Vh
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""~ SJx( t) IPp~dt) < a.,

T

,hen
J'flf(t.s) lPj(dt) <

T

foq X-a.a. s E S.

Proof. Assume first that p(T) = 1. Let U.U VU .... be i.i.d. random elements

. in T. which are defined on some auxiliary probability space (0 1 ' 1 .P 1 . such

that Y(U)=,i. Since, for P-a.a. L*fl.

4 S IX(U(wI),)IP Pl(dwOl) = jfIX(t.,w)IPpidt) < o
1" 1~ T

by Lemma 5 we have n -+ 0 P1 -a.s. By Fubini's theorem, for P1-a.a.

W 1 e fl n- /pX(Un (I)) - 0 P-a.s.. which can be written as follows:

(X(tl), X(t2 ) .... ) 6 C P-a.s.,

where tn= tn(W1 ) = Un(wl) and

C = ((a) eP lim nl/Pa = 0.
n-4n

Clearly, C is a measurable linear supspace of RR By Proposition 3

(f(t I-)' f(t 2 ,* ) .... ) e C X-a.e.

Using Fubini's theorem again, we get, for X-a.a. seS. n-1 /Pf(Un.S) -0 Pl-a.s..

which, by Lemm 1, is equivalent to

f JIf(t.s)IPP(ds) = f I f(U(Gl),s)I p Pi(dwl) < .
T1

Theorem 2 is proven in the case p(T) = 1.

In the general case, let p(1) be a probability measure equivalent to p, and

let 4,(t) = (du/du(1))(t). Put fl(t's) ; (t)f(t,s), X (t) ="/P(t)X(t).

Then {X1 (t): teT} is a measurable process such that

d
{Xl(t): tET} = {ffl(t,s)A(ds): teT)

S

and

f1XI(t)IPXI(')(dt) = fJX(t)jPp(dt) < a.s.
T' T

- q ~ ~ j 1'!4~ gV.~d ~ ~ ~ ' ?. Sd? d ~ ~ . -LA
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By the firs part of the proof we have

fjf(t.s)IPp(dt) = f~f1 (ts)IPp(1)(dt) < .
T T

for X-a.a. s6S. which concludes the proof of the theorem.

5. Path properties of general stochastic integral processes.

The example following Theorem 4 shows that in the case of Gaussian

processes satisfying (*). certain properties of sections of f may be not

reflected in the behaviour of the sample paths of these processes. Further.

none of the theorems in Section 4 is true for non-random processes. We

illustrate this by the following (trivial) example: Let h:T -+ IR be any function

and put f(t s)=h(t)[1-2s], se(O,1). Let A be the Lebesgue measure and set

1
Z(t)=fo f(ts)A(ds). Obviously Z(t)aO for all t and one can say nothing about

the regularities of f(.,s) (i.e. about h). These examples suggest that in order
"p

to extend the results of Section 4 to general i.d. processes one should

investigate only the pure Poissonian part of an i.d. process (see Maruyama. [4]

for the decomposition of i.d. processes). The method of symmetrization allows

one to remove the deterministic and Gaussian parts of an i.d. process and reduce

the problem to the case of a symmetric Poissonian process. We apply this method

below, to generalize Proposition 3 of the previous section.

Let X=(X(t): tET) satisfy (*). where A Is an arbitrary i.d. random measure

with control measure X. Suppose that for certain linear measurable subspace

C C F and (tn) C T. with proability one,n

(5.1) (X(t1 ),X(t 2) ....) F C.

Let X = {X(t): tET) and A'={A'(A): Aeaf} be independent copies of X and A.

respectively. Put X(t) X(t) - X'(t) and A(A) A(A) A'(A). From (5.1) one

gets

(5.2) (X(tl),X(t2).... e C a.s.,

and by (")

- %. .%. %
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(5.3) {X(t): tFT} = (ff(t.s)A(ds): tET).

S

There exist mutually independent symmetric i.d. random measures

M = {M(A): A e Y} and W = {W(A): A e Y} (defined perhaps on a different

probability space than A) such that W is Gaussian, N has no-Gaussian component

and

d
nvwfA(A): A&) = {M(A) + W(A): A e Y).

In view of (5.2) and (5.3) we get

0 = 2P{(X(t1).X(t2 ) .... ) f C}

= 2 P{(IM(tl) + Iw(tl' IM(t2) + Iw(t 2 )....) f C)

""2P((I )(t 1 ) I1)0 2 ) ... 4E C)

* by the independence and symmetry, where

IK(t) = ff(t,s)M(ds), Iw(t) = ff(t.s)W(ds), teT.
S S

Hence

(IM(tl)I(t2) .... ) 6 C a.s.

Applying Proposition 3 (for X(t) = IM(t)) one gets

,.(f(t I ,- ) ,  f(t 2 '. ) .... ) F- C m-a.e.,

where m is a control measure of M. and this is the conclusion of Propsoition 3

in the general case. Note that m is absolutely continuous with respect to X but

not necessarily vice versa.

,Proceeding likewise one can generalize Theorems 4 and 6 to arbitrary i.d.

processes by an appropriate replacement of X by m. a control measure of the

non-Gaussian part of the symmetrization of A.

.N

S.'

. J.. . . . .% l l [ -=i - [
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